Learning Cycle-Linear Hybrid Automata for Excitable Cells

نویسندگان

  • Radu Grosu
  • Sayan Mitra
  • Pei Ye
  • Emilia Entcheva
  • I. V. Ramakrishnan
  • Scott A. Smolka
چکیده

We show how to automatically learn the class of Hybrid Automata called Cycle-Linear Hybrid Automata (CLHA) in order to model the behavior of excitable cells. Such cells, whose main purpose is to amplify and propagate an electrical signal known as the action potential (AP), serve as the “biologic transistors” of living organisms. The learning algorithm we propose comprises the following three phases: (1) Geometric analysis of the APs in the training set is used to identify, for each AP, the modes and switching logic of the corresponding Linear Hybrid Automata. (2) For each mode, the modified Prony’s method is used to learn the coefficients of the associated linear flows. (3) The modified Prony’s method is used again to learn the functions that adjust, on a per-cycle basis, the mode dynamics and switching logic of the Linear Hybrid Automata obtained in the first two phases. Our results show that the learned CLHA is able to successfully capture AP morphology and other important excitable-cell properties, such as refractoriness and restitution, up to a prescribed approximation error. Our approach is fully implemented in MATLAB and, to the best of our knowledge, provides the most accurate approximation model for ECs to date.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling excitable cells using cycle-linear hybrid automata.

Cycle-linear hybrid automata (CLHAs), a new model of excitable cells that efficiently and accurately captures action-potential morphology and other typical excitable-cell characteristics such as refractoriness and restitution, is introduced. Hybrid automata combine discrete transition graphs with continuous dynamics and emerge in a natural way during the (piecewise) approximation process of any...

متن کامل

Spatial Networks of Hybrid I/O Automata for Modeling Excitable Tissue

We propose a new biological framework, spatial networks of hybrid input/output automata (SNHIOA), for the efficient modeling and simulation of excitable-cell tissue. Within this framework, we view an excitable tissue as a network of interacting cells disposed according to a 2D spatial lattice, with the electrical behavior of a single cell modeled as a hybrid input/ouput automaton. To capture th...

متن کامل

Efficient Modeling of Excitable Cells Using Hybrid Automata

We present an approach to modeling complex biological systems that is based on Hybrid automata (HA). HA combine discrete transition graphs with continuous dynamics. Our goal is to efficiently capture the behavior of excitable cells previously modeled by systems of nonlinear differential equations. In particular, we derive HA models from the Hodgkin-Huxley model of the giant squid axon, the Luo-...

متن کامل

Nonlinear Hybrid Automata Model of Excitable Cardiac Tissue

Implantable cardiac devices like pacemakers and defibrillators are life-saving medical devices. To verify their functionality, there is a need for heart models that can simulate interesting phenomena and are relatively computationally tractable. In this benchmark we implement a model of the electrical activity in excitable cardiac tissue as a network of nonlinear hybrid automata. The model has ...

متن کامل

Relational Databases Query Optimization using Hybrid Evolutionary Algorithm

Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007